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Abstract 26 

Understanding the connections between the latent heating from precipitation and atmospheric 27 

cloud radiative effects is essential for climate models to accurately represent the cross-scale links 28 

between cloud microphysics and global energy and water cycles. In this paper, two energy and 29 

water cycle coupling cloud impact parameters (CIPs), radiative cooling efficiencies, Rc, and 30 

heating efficiencies, Rh, are used to characterize how efficiently clouds can heat the atmosphere 31 

or cool the surface, respectively, per unit rain from A-Train observations and two reanalyses. 32 

Global distributions of CIPs are highly dependent on cloud regime and reanalyses fail to simulate 33 

strong Rc and Rh at high sea surface temperature (SST)/column water vapor (CWV) in deep 34 

convection regions like the Indo-Pacific warm pool, but produce stronger Rc and Rh over 35 

SST/CWV associated with shallow, warm rain systems as in the eastern Pacific marine 36 

stratocumulus regions. The dynamic regime controls the sign of Rh, while the CWV appears to 37 

be the larger control on the magnitude. The magnitude of Rc is highly coupled to the dynamic 38 

regime. Observations also show two thermodynamic regimes of strong Rc, at low SST and CWV 39 

and at high SST and CWV, only the former of which is captured by the reanalyses. While the 40 

reanalyses generate fairly similar climatologies in the frequency distributions of environmental 41 

states, differences in Rc and Rh between reanalyses and A-Train are linked to differences in the 42 

vertical profiles of the temperature, specific humidity and vertical velocity for precipitating cloud 43 

scenes. 44 

Plain Language Summary 45 

Accurate projection of future climate requires understanding coupled interactions 46 

between clouds, precipitation, and their environment. Here we use satellite observations to 47 

calculate two parameters to reveal how efficiently clouds can heat the atmosphere or cool the 48 

surface per unit rain and compare to those simulated by observationally-constrained reanalysis 49 

datasets. The reanalyses show similar global patterns but have weaker atmospheric heating and 50 

surface cooling per unit rain in areas of deep convection and opposite effects in low cloud 51 

regions. Examination of these parameters as a function of their environment shows that 52 

reanalyses cool the atmosphere too much per unit rain in environments with low sea surface 53 

temperatures and water vapor.  In regions with high sea surface temperature and water vapor, 54 

deep convection in reanalyses does not heat the atmosphere enough per unit rain. Whether clouds 55 

occur in regions of large-scale ascent or descent determines whether clouds heat or cool the 56 

atmosphere and how strong the clouds cool the surface, while sea surface temperature and water 57 

vapor control the strength of the atmospheric heating. Both observations and reanalyses suggest 58 

that water vapor is the stronger control on how much clouds heat the atmosphere per unit rain. 59 

 60 

1. Introduction 61 

 The role of clouds in climate feedback, which highly depends on cloud macro- and 62 

micro- physical properties, remains one of the largest uncertainties in current climate projection 63 

(Bony and Dufresne 2005; Randall et al. 2007; Dessler, 2010; Choi et al. 2014 Bony et al. 2015; 64 

Ceppi et al. 2017). The macro- and microphysical properties impact both cloud radiative effects 65 

and the precipitation intensity of the clouds (Mace et al. 2017; Wood et al. 2012). To predict 66 

cloud feedbacks accurately in the climate system, two elements should be further understood: the 67 

ability of climate models and physical parameterizations to produce cloud and precipitation from 68 

changing atmospheric states and the ability to use these cloud properties to estimate the radiative 69 

energy fluxes that, in turn, heat the atmosphere or cool the surface (Xu et al. 2005; 2016). 70 
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Thus, cloud radiative effects and cloud feedback are highly connected to the precipitation 71 

process and the efficiencies in converting cloud condensate to surface precipitation (Stevens and 72 

Bony 2013; Bony et al. 2015). These links between the water and energy cycles occur across a 73 

variety of spatial and temporal scales. At global annual mean timescales, energy constrains 74 

precipitation, with precipitation increases primarily constrained by atmospheric radiative cooling 75 

(Held and Soden 2006; Stephens and Ellis 2008; O’Gorman, P.A. et al. 2012; Pendergrass and 76 

Hartmann 2014; Dinh and Fueglistaler 2017). Because the cloud radiative influence on the 77 

exchange of radiative fluxes between the atmosphere and surface are intimately linked with the 78 

water cycle through radiative-convective equilibrium, the strength and location of cloud radiative 79 

effects and precipitation intensity is not independent and their relative magnitudes in global 80 

models depend strongly on the way clouds and convection are parameterized. The coupling of 81 

radiation-precipitation occurs across scales ranging from those of climatic scale (Allan et al. 82 

2009; Previdi et al. 2010; Andrew et al. 2010, O’Gorman, P.A. et al. 2012), El Niño and 83 

Southern Oscillation (ENSO) (L’Ecuyer et al. 2006), Madden-Julian Oscillation (MJO) (Kim et 84 

al. 2015) to mesoscale convective system (MCSs) (Bouniol et al. 2016). This multiscale coupling 85 

should be accurately represented for models to simulate atmospheric radiative heating and 86 

cooling successfully. Failing to simulate the coupling of radiation-precipitation relationships at 87 

each spatial and temporal scale yields large uncertainties in representing cloud cover, 88 

precipitation (both stratiform precipitation and convective precipitation) and thermodynamic 89 

forcing. (Wilcox et al. 2001; O’Brien et al. 2013; Betts et al. 2014; Calisto et al. 2014). The 90 

phase of ENSO and MJO coupling with large-scale global circulation may also be 91 

misrepresented and lead to large bias in climate models and reanalysis if the radiation-92 

precipitation coupling relationship is not well represented (L’Ecuyer et al. 2006, Kim et al. 93 

2015). 94 

The way that clouds and precipitation are currently parameterized and coupled in General 95 

Circulation Models (GCMs) is known to produce errors in radiative and latent heating 96 

distributions, such as insufficient low cloud cover in subtropical subsidence regions (Kay et al. 97 

2012), warm sea surface temperature (SST) biases in the southeast Pacific (Yu and Mechoso 98 

1999; Dai et al. 2003; Li et al. 2004), the presence of a ubiquitous tropical rain band south of the 99 

equator (Waliser et al. 2003; Masunaga and L’Ecuyer 2011), premature onset of deep convection 100 

particularly over land (Dai and Trenberth 2004; Grabowski et al. 2006; Clark et al. 2007), the 101 

lack of Madden-Julian Oscillation (MJO) (Lee et al. 2001), and underestimates of the Walker 102 

circulation response to El Nino (L’Ecuyer and Stephens, 2007; Kociuba and Power 2015). The 103 

role of the coupling cloud–radiation interaction also affects the simulation of the MJO (Kim et al. 104 

2013) and can amplify the warm El Nino phases of the El Nino-Southern Oscillation (ENSO) 105 

(Radel et al. 2016).  106 

In addition to cloud-precipitation-radiation biases in climate models, reanalyses are also 107 

biased with respect to the observations, mainly due to the different assimilation methods and 108 

forecasting systems they use, even though reanalyses are constrained by observations. Clouds, 109 

radiation, and precipitation represented in reanalyses generally agree with observations at the 110 

global mean scale, however, large biases occur at the regional scale. Dolinar et al. (2016) 111 

compared five reanalysis precipitation rates (PRs) with those from the Tropical Rainfall 112 

Measurement Mission (TRMM) and found reanalysis PRs overestimate the large-scale TRMM 113 

mean by 3% - 20 %, and also overestimate PRs in both ascent and subsidence regimes. PR biases 114 

over the ascent regime are an order of magnitude larger than those over the descent regime. Also, 115 

the biases in reanalysis caused by a lack of mid-level and/or low clouds, water vapor, anomalous 116 
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temperature structures and overestimated atmospheric stability represented by stronger 117 

subsidence result in both radiative and precipitation biases (Naud et al. 2014; Griggs et al. 2008; 118 

Liu et al. 2016; Stengel et al. 2018). Both reanalysis and some climate models may have cloud, 119 

convection, or boundary layer scheme problems that lead to a large bias in individual weather 120 

systems and an inability to simulate the correct surface solar radiation (Naud et al. 2014), as well 121 

as global precipitation (Bodas-Salcedo et al. 2007). Approximations used in the model’s 122 

representation of moist processes strongly affect the quality and consistency of both cloud 123 

radiative effect (CRE) and the hydrological cycle (Dee et al. 2011; Bosilovich et al. 2017).  124 

In some numerical models, such as the minimal model of a moist equatorial atmosphere 125 

of Fuchs and Raymond (2001), the coupled ocean-atmosphere model of Bretherton and Sobel 126 

(2002) and Sobel and Gildor (2003), they fixed the relationship between CRE and precipitation 127 

in radiative heating and cooling parameterization processes, assuming that clouds reduce the 128 

clear-sky radiative cooling by an amount proportional to precipitation. This cloud-radiation 129 

feedback parameter was determined by the Tropical Ocean Global Atmosphere Coupled Ocean-130 

Atmosphere Response Experiment (TOGA COARE) radiation dataset and fixed at 0.2, but they 131 

note that the uncertainties are as large as 50%.   132 

Emerging state-of-the-art satellite observations offer the opportunity to examine this 133 

relationship in detail. In this context, L’Ecuyer et al. (2006) and Daloz et al. (2018) explored five 134 

monthly mean cloud impact parameters (CIPs) based on both TRMM and A-Train satellite 135 

observations that can connect the precipitation and cloud radiative effects to represent the cloud 136 

processes in climate models better. There are two energy and water cycle coupling parameters in 137 

the definition of CIPs, the surface cooling efficiency, Rc and atmospheric heating efficiency, Rh, 138 

representing how efficiently a precipitating cloud can cool the surface or heat the atmosphere, 139 

respectively, per unit latent heat release from rainfall. These observational radiative efficiencies 140 

were first used to show the evidence of cloud feedback pathways associated with ENSO in the 141 

Pacific by L’Ecuyer et al. (2006). They demonstrated that clouds in the East Pacific heat the 142 

atmosphere more efficiently and cool the surface less efficiently per unit rainfall with increasing 143 

SST, suggesting that changes in cloud characteristics may reinforce changes in the Walker 144 

circulation during El Niño events. Their estimates of Rc range from -0.7 to 0 and -0.1 to 0.4 for 145 

Rh at the monthly scale, which is considerably different from the constant of 0.2 used in the 146 

aforementioned modeling studies with biases greater than 100%. In Daloz et al. (2018), they 147 

used A-Train observations and reanalyses to demonstrate the global distribution and climatology 148 

of CIPs for the first time. The global mean spatial distributions of CIPs were compared 149 

comprehensively, and while they briefly examined the relationship between CIPs and monthly 150 

mean vertical pressure velocity at 500hpa (500), there was little discussion on the relationship to 151 

the thermodynamic environments or the variations in the strength off the coupling at different 152 

time scales. As the cloud radiative feedback on atmospheric circulation is still one of the most 153 

important topics in climate studies, the environmental impacts on CIPs should be studied in more 154 

detail to help improve the performance of GCM and reanalysis (Bretherton et al. 2002, 155 

Bretherton et al. 2005; Muller et al. 2012; Bony et al. 2015). Also, the high sensitivity of the 156 

strength of the cloud-radiation feedbacks in the current models indicate that investigation of the 157 

ratio between CRE and precipitation in observation can provide a reference for model designers 158 

(Ying et al. 2016). 159 

 One of the key obstacles to accurately understanding the feedback processes of clouds in 160 

climate is their dependence on the environments in which the clouds reside (Stephens 2005). 161 

Studies show that different cloud regimes, which determine the sign and strength of coupled 162 
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CIPs (discussed more later), are associated with both dynamical and thermodynamical 163 

environmental variables, such as SST (Xu et al. 2009, Eitzen et al. 2010), CWV and 500. 164 

Correspondingly, they also influence the coupling between precipitation and radiation (Wang 165 

and Sobel 2011). Kubar et al. (2012) reported a strong correlation between low topped cloud 166 

fractions and SST and 500. They also found that the correlation increased with increasing 167 

averaging time scales (Kubar et al 2012). Their findings indicate that when environmental 168 

variables change, such as SST and  anomalies during an ENSO event, the fraction of clouds 169 

should change, leading to a corresponding change of cloud radiative forcing, which may 170 

strengthen or dampen large-scale circulation and impact precipitation intensity. This suggests 171 

further study of the coupling CRE and precipitation with the environment is needed. In addition, 172 

the coupling of CRE and precipitation is needed in environmental control experiments (Larson et 173 

al. 1999) because both CRE and precipitation are susceptible to changes in SST and water vapor 174 

(Larson et al. 1999, 2003a, 2003b). However, in modeling experiments, they are often tested 175 

separately instead of coupled. Additionally, radiative heating/cooling and precipitation are 176 

constrained under radiative-convective equilibrium (RCE). Studies show that under RCE 177 

assumption, temperature and water vapor have positive feedback in atmospheric longwave 178 

cooling (Allan 2009; Allan 2011; Pendergrass and Hartmann 2014; Colman, 2015), but L’Ecuyer 179 

et al. (2006) demonstrated that RCE cannot be met locally due to the highly variable nature of 180 

frequency, structure, and radiative properties of clouds and precipitation, which also motivates 181 

further examination of the dependence of coupled CIPs on the environment.  182 

Overall, the main goal of this study is to evaluate the range of energy and water cycle 183 

coupling CIPs in both A-Train satellite and reanalysis datasets and to understand how they are 184 

linked to the dynamic and thermodynamic environment. A comparison in the global distribution 185 

of A-Train-derived and reanalysis-derived coupling CIPs at different time scales is first 186 

conducted.  Given the aforementioned important links between the environment and 187 

precipitation, radiation and their coupling, the analysis of Daloz et al. (2018) is expanded to also 188 

include not only the CIP relationship with 500, but also SST and CWV. Observational and 189 

reanalysis coupling CIPs are conditionally sampled by matched environmental variables to 190 

determine how well reanalyses capture interactions among radiation-precipitation coupling, 191 

thermodynamic environments, and the corresponding large circulation. Profiles of humidity, air 192 

temperature and vertical velocity profiles are then analyzed to reveal how reanalysis differences 193 

in environmental states are linked to coupled CIP differences from the observations.  194 

 195 

2. Data and Methodology 196 

2.1 Satellite observations 197 

The coupled CIPs are calculated from standard CloudSat-CALIPSO data products, 198 

including 2B-FLXHR-LIDAR (Stephens et al. 2002 and 2008; L’Ecuyer et al. 2008), 2B-199 

GEOPROF-LIDAR (Stephens et al. 2002, 2008 and 2017; Sassen et al. 2008; Mace et al. 2009) 200 

and 2C-RAIN-PROFILE (Lebsock and L’Ecuyer 2011), and the Advanced Microwave Scanning 201 

Radiometer–Earth Observing System (AMSR-E) rainfall product, AE_RAIN (Wilheit 2003; 202 

Kummerow et al. 2010). CloudSat is a polar-orbiting satellite with a 98° orbital inclination 203 

carrying a 94 GHz (W-band) Cloud Profiling Radar (CPR), which is used to probe the vertical 204 

structure of clouds and precipitation (Stephens et al. 2008; Stephens et al. 2017; L’Ecuyer and 205 

Jiang 2010; Mace et al. 2014). CALIPSO uses the cloud-aerosol lidar with orthogonal 206 

polarization (CALIOP) to probe the vertical structure and properties of thin clouds and aerosols. 207 

With the combination of both CPR and CALIOP, there is an improved ability to detect thin 208 
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cirrus and low clouds, especially when multiple layered clouds exist. The 2B-GEOPROF-209 

LIDAR dataset provides the cloud layer and cloud top information to distinguish the heights and 210 

the number of cloud layers. The precipitation is provided by the 2C-RAIN-PROFILE dataset, 211 

which uses the two-way path integrated attenuation (PIA) of the entire atmospheric column to 212 

determine the presence of precipitation within the column (Haynes et al. 2007; Haynes et al. 213 

2009; Stephens et al. 2008; Lebsock et al. 2011). However, the CPR has limitations in detecting 214 

heavy rain because of attenuation (Behrangi et al, 2012). To mitigate this limitation, rain rate 215 

derived from AMSR-E observations is used whenever the AMSR-E rain rate exceeds 2C-RAIN-216 

PROFILE. AMSR-E is a total power passive-microwave (MW) radiometer system on aboard 217 

NASA EOS Aqua satellite with twelve channels and six frequencies measuring brightness 218 

temperature at 6.925, 10.65, 18.7, 23.8, 36.5 and 89.0GHz. Rain rate and rain type over ocean 219 

are from the AE_RAIN products generated via the Goddard Space Flight Center (GSFC) 220 

Profiling algorithm (GPROF2010) (Wilheit 2003; Kummerow et al. 2010; Kummerow et al. 221 

2015). This study uses an existing rainfall subset that collocated AMSR-E rainfall products with 222 

the CloudSat track (Global Hydrology Resource Center/MSFC/NASA, 2009). One thing to note 223 

is that currently the CloudSat 2C-RAIN-PROFILE dataset is only applied over ocean (Lebsock 224 

et al 2011), so the coupled CIPs are only calculated over the ocean.  225 

Radiative fluxes are used in the calculation of coupled CIPs and are provided by 2B-226 

FLXHR-LIDAR (Stephens et al. 2008; L’Ecuyer et al. 2011), referred to hereafter as 2BFLX. 227 

2BFLX blends information from the A-Train constellation including CloudSat’s CPR, the 228 

CALIPSO satellite’s CALIOP, and the Moderate Resolution Imaging Spectroradiometer 229 

(MODIS) and AMSR-E instruments on the Aqua satellite to generate vertically-resolved profiles 230 

of broadband radiation using a radiative transfer model (L’Ecuyer et al. 2008; Henderson et al. 231 

2013). The 2BFLX algorithm, with the combination of multisensor observations, brings a more 232 

accurate and comprehensive perspective in determining the radiative impacts of clouds and 233 

aerosols.  234 

 235 

2.2 Reanalyses  236 

This study compares the coupled CIPs from two modern reanalyses, MERRA-2 and 237 

ERA-Interim with A-Train derived products from September 2006 – December 2010 for 60°S - 238 

60°N. The relationship between the environment and coupled CIPs is also evaluated. 239 

 240 

2.2.1 MERRA-2    241 

MERRA-2 (Gelaro et al. 2017; Bosilovich et al. 2015b; Bosilovich et al. 2016; 242 

Bosilovich et al. 2017) replaces the previous MERRA with increased resolution, improvements 243 

in the GEOS-5 model, and in the assimilation system. The new system enables assimilation of 244 

modern hyperspectral radiance and microwave observations as well as GPS-Radio Occultation 245 

datasets, and is the first long-term reanalysis that assimilates space-based observations of 246 

aerosol. After 2005, ozone observations are included. Several upgrades have been made to the 247 

physical parameterization schemes including an increase in reevaporation of frozen precipitation 248 

and cloud condensate (Molod et al. 2015). The new reanalysis dataset now contains a Tokioka-249 

type trigger (Bacmeister and Stephens, 2011) on deep convection as part of the relaxed Arakawa-250 

Schubert convective parameterization (Moorthi and Suárez 1992; Cullather et al. 2014). In our 251 

studies, we use tavg1_2d_rad_Nx 1-hourly time-averaged data to calculate the radiative fluxes at 252 

surface and atmosphere and total precipitation from tav1_2d_flx_Nx 1-hourly time-averaged 253 

data to calculate the latent heating.  254 
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 255 

2.2.2 ERA-Interim 256 

ERA-Interim (Dee et al. 2011) is a global atmospheric reanalysis beginning in 1979, 257 

developed by the European Center for Medium Range Forecasts (ECMWF). ERA-Interim 258 

replaced the previous reanalysis dataset from the ECMWF, ERA-40. Between ERA-40 and 259 

ERA-Interim, changes to the convective and boundary layer cloud schemes were made. For 260 

example, the convective cloud scheme can now be triggered at night, which increases its 261 

atmospheric stability and therefore creates less precipitation (Dee et al. 2011). The new moist 262 

boundary layer scheme reduces the underestimate of stratocumulus clouds because of changes in 263 

the inversion strength and height (Kohler et al. 2011). Convection, vertical motion, radiative 264 

heating and turbulence are connected to cloud generation via the prognostic cloud scheme (Jakob 265 

1998). The Rapid Radiative Transfer Model computes radiation (Mlawer et al. 1997). In this 266 

study, we use the 3-hour surface flux variable and surface albedo to get the downward shortwave 267 

flux and the reflected upward shortwave flux. Radiative flux variables at the top of atmosphere 268 

(TOA) are obtained directly from ERA-Interim. Total precipitation from ERA-Interim is used to 269 

calculate the latent heating. ERA-Interim also provides the environmental variables, SST, CWV, 270 

500, which are used as the environmental variables that are matched with coupled CIPs.  271 

 272 

2.3 Calculations of Coupled CIPs  273 

Two coupled CIPs are calculated with the shortwave and longwave CRE from 2BFLX 274 

and the coincident CloudSat/AMSR-E precipitation. The radiative cooling efficiency, Rc, at the 275 

surface (SFC) is defined as: 276 

𝑅𝑐 =
𝐹𝑆𝑊,𝑆𝐹𝐶,𝑎𝑙𝑙
↓ −𝐹𝑆𝑊,𝑆𝐹𝐶,𝑐𝑙𝑒𝑎𝑟

↓

𝐿𝐻
    (1)  277 

where  𝐹𝑆𝑊,𝑆𝐹𝐶
↓  is the downwelling shortwave (SW) flux that is evaluated in both clear-sky and all-278 

sky conditions. Subscripts ‘clear’ and ‘all’ correspond to clear-sky and all-sky conditions 279 

respectively. Rc represents a cloud’s ability to cool the surface per unit LH from rainfall, where 280 

LH is defined as the column latent heating from the precipitation reaching the surface and is 281 

calculated as  282 

𝐿𝐻 = 𝜌 ∗ 𝐿𝑣 ∗ 𝑅𝑅                   (2)         283 

where ρ is the density of water, Lv is latent heat of vaporization for water, and RR is the average 284 

surface rainfall rate from CloudSat or AMSR-E. Similarly, the atmospheric radiative heating 285 

efficiency Rh describes a cloud’s ability to heat the atmosphere per unit LH,  286 

𝑅ℎ =
(∆𝐹𝐿𝑊 − ∆𝐹𝑆𝑊)𝑎𝑙𝑙 − (∆𝐹𝐿𝑊 − ∆𝐹𝑆𝑊)𝑐𝑙𝑒𝑎𝑟

𝐿𝐻
(3) 

where ∆𝐹𝐿𝑊 = 𝐹𝐿𝑊,𝑆𝐹𝐶
↑ − 𝐹𝐿𝑊,𝑆𝐹𝐶

↓ − 𝐹𝐿𝑊,𝑇𝑂𝐴
↑   and  287 

 ∆𝐹𝑆𝑊 = 𝐹𝑆𝑊,𝑇𝑂𝐴
↓ + 𝐹𝑆𝑊,𝑆𝐹𝐶

↑ − 𝐹𝑆𝑊,𝑆𝐹𝐶
↓ − 𝐹𝑆𝑊,𝑇𝑂𝐴

↑  are the longwave (LW) and SW atmospheric radiative 288 

flux divergence, respectively, calculated between the SFC and TOA. Clearly, you can see that 289 

the numerator of Rc is the cloud forcing at surface, that is, the amount of incoming solar radiation 290 

that has been hindered by the clouds. The numerator of Rh is the total CRE of the atmosphere, 291 

while the denominator of both equations is latent heating that has been released by the 292 

precipitation from the clouds. 293 

We use 2BFLX to calculate the numerators of Equation (1) and Equation (3) during the 294 

daytime. The combination of 2C-RAIN-PROFILE and AMSR-E data provide surface 295 

precipitation rate from which we can estimate latent heating as in Equation (2). Again, due to the 296 
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known limitations of the 2C-RAIN-PROFILE dataset in heavy rain scenarios, AMSR-E-297 

CloudSat collocated products are used when the CPR is judged as saturated based on a flag in the 298 

algorithm. Otherwise, the CPR rain rate is used because CloudSat has a superior ability in 299 

detecting light and moderate rain (Behrangi et al. 2012; Lebsock et al. 2011).  300 

Because the reanalysis precipitation is calculated based on the moisture budget and must 301 

meet the budget equilibrium, sometimes the precipitation has a rather small value in one grid 302 

box. As Stephens et al. (2010) discussed, models produce precipitation approximately twice as 303 

often as that observed and make too much light rainfall. The reanalysis products analyzed here 304 

provided values as small as 10
-12 

mm/hr, which is well below any space borne precipitation 305 

sensor detection limits and also produces unrealistically large values of Rc and Rh. Here we use 306 

the minimum precipitation value of 0.01 mm/hr for each grid box, which is the statistical 307 

minimum value of precipitation after sampling the CloudSat/AMSR-E precipitation for a grid 308 

box. This threshold is used to filter precipitation in reanalysis; however, we tested different 309 

thresholds and while there are expected changes in the quantitative value, the overall patterns 310 

and conclusions of this study are not dependent on the choice of threshold. To compare the 311 

different reanalysis datasets to each other and to the observations, we download ERA-Interim 312 

and MERRA-2 dataset at 2.5° x 2.5° directly with inherent interpolation. Meanwhile, all the A-313 

Train data are also averaged to a common 2.5° x 2.5° grid at 3-hourly temporal resolution. Each 314 

pixel from A-Train datasets is matched to the nearest 3-hourly time step of the reanalysis 315 

datasets. 316 

 317 

3. Global coupled CIPs distributions  318 

An overview of the global distribution of coupled CIPs from A-Train, ERA-Interim and 319 

MERRA-2 is presented in Figure 1. These differ from the global patterns presented in Daloz et 320 

al. (2018) in a significant way.  Daloz et al. (2018) used monthly-averaged radiation and 321 

precipitation to derive Rc and Rh.  While these values are useful for identifying climatological 322 

biases that result from systematic differences in cloud and precipitation PDFs, at these long 323 

timescales radiation and precipitation may not be directly coupled.  For example, it would be 324 

possible to capture the same monthly mean value of the coupled CIPs with compensating errors 325 

in the distribution of clouds and the wrong clouds producing precipitation. To more directly 326 

explore the connection between precipitation and radiation on the timescales of the clouds and 327 

the timescales for which the parameterizations must operate in the reanalyses, patterns of three 328 

hourly-averaged results are shown in Figure 1. They are similar to the patterns calculated from 329 

monthly mean fluxes, but differ in magnitude, since precipitation varies more temporally and 330 

spatially than the radiative flux. As a result, when Rc and Rh are calculated at shorter time scales, 331 

the variation of Rc and Rh is larger than that of the monthly average timescale shown in Daloz et 332 

al. (2018).  333 

From A-Train observations, there are clear patterns that correspond to the global 334 

distribution of predominant cloud regimes. Generally, marine stratocumulus regions in the south 335 

and north Pacific and south or west Atlantic (Wood et al. 2012; Hartmann et al. 1993), where 336 

clouds cool the surface and atmosphere most efficiently because precipitation is weak, 337 

correspond to the strongest negative Rc and Rh. The Indo-Pacific warm pool region (white 338 

rectangle in Fig. 1) shows strong Rc and Rh, which means that deep convection cools the surface 339 

and heats the atmosphere more efficiently per unit rainfall. In shallow cumulus regions 340 

(180°W~135°W, 10°S~25°S), both Rc and Rh are weaker than other regions. Note that polar 341 

regions (beyond 60°N or 60°S), are removed due to the lack of liquid surface precipitation 342 
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(Stephen et al. 2008; L’Ecuyer et al. 2010; Lebsock and L’Ecuyer 2011; Mace et al. 2009; Mace 343 

et al. 2014) that results in too few samples in each grid box to provide meaningful results. 344 

Comparison with ERA-Interim and MERRA-2 in Figure 1 shows the global patterns are 345 

generally consistent, although some tropical regions show significant differences between A-346 

Train and the reanalyses. One of these main biases appears over the Indo-Pacific warm pool. 347 

Reanalyses generally fail to simulate both large Rc and Rh there. One possible reason, at least for 348 

ERA-Interim, is that it underestimates the LW CRE at TOA over tropical regions due to biases in 349 

cloud fraction and the TOA radiative flux diurnal cycles. Moreover, ERA-Interim overestimates 350 

precipitation in both ascending and descending regimes (Itterly et al 2014; Dolinar et al 2016). 351 

Fig 1c indicates that ERA-Interim Rc is generally stronger than other products over marine 352 

stratocumulus regions, which is likely caused by the SW biases reported by Dolinar et al. (2016). 353 

Meanwhile, Fig 1f illustrates that CloudSat and ERA-Interim Rh is generally more negative than 354 

MERRA-2 over marine stratocumulus regions, which is likely caused by underestimating the 355 

cloudiness over marine stratocumulus areas in MERRA-2 reported by Hinkelman (2019). Also, it 356 

has been reported that there is stronger water cycle in MERRA-2 than the observations because 357 

modifications in the MERRA-2 model resulted in changes in ocean evaporation and atmospheric 358 

transport and excessive precipitation is generated in the Indo-Pacific warm pool (Bosilovich et 359 

al. 2015; Bosilovich et al. 2017; Gelaro et al. 2017). This may also explain why MERRA-2 Rh is 360 

slightly smaller than ERA-Interim over the Indo-Pacific warm pool. Other differences appear 361 

over eastern Pacific marine stratocumulus region, where reanalyses generally produce stronger 362 

Rc over a larger region, which means that the clouds cool the surface more efficiently per unit 363 

rainfall. While reanalyses are constrained by observations, such biases may have significant 364 

implications for freely running GCMs since the regional variations in Rc and Rh feedback on the 365 

large-scale circulation. It also implies some limitations of models to represent the Walker and 366 

Hadley Circulations (L’Ecuyer et al. 2006). 367 

As previously mentioned, due to the sampling limitations of the sun synchronous A-Train 368 

satellites, Rc and Rh values were only compared with reanalysis for grid boxes with satellite 369 

overpasses. While not shown here, Rc and Rh can be calculated from the full diurnal cycle 370 

available in the reanalyses. The climatological global patterns of the reanalyses are similar and 371 

still highly depend on the distributions of the cloud regimes, however the regional differences 372 

with observations are amplified with even weaker Rh and Rc in the warm pool and stronger Rh 373 

and Rc in subsidence regimes and the southern oceans.   374 

 Figure 2 demonstrates the time-scale dependence of Rc and Rh across daily to long-term 375 

(here 3 months) averaging time scales for the three different cloud regimes, deep convection, 376 

shallow cumulus, and stratocumulus, outlined in Figure 1. In each region, the absolute magnitude 377 

of both Rc and Rh decrease with increasing averaging time scales. At monthly or longer 378 

timescales, coupled CIP value are small and differences between the reanalyses and observations 379 

are also relatively small. However, as the averaging time scales decrease, the model-380 

observational differences increase in most cloud regimes, but especially in the warm pool region.  381 

The top panels show that the precipitation-radiation coupling in deep convective regions, in 382 

particular, is not well-captured at the shorter time scales of the convection and both reanalyses 383 

have significantly weaker CIP than observed. The biases in greenhouse effect, surface SW CRE, 384 

and precipitation each also increase with averaging timescale (not shown), however, not to the 385 

degree of Rc and Rh. This suggests that these increasing biases with shorter averaging timescales 386 

are not due just radiation or precipitation, but rather their coupling in the reanalyses. Differences 387 

in the low cloud regimes are smaller, with the shallow cumulus regime showing similar but 388 
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weaker patterns to deep convection. In stratocumulus regions, the biases are more constant with 389 

averaging timescale, likely representing the relatively persistent (in both space and time) cloud 390 

decks with little precipitation.  391 

 392 

4. Environmental regime dependence 393 

The previous figures indicate differences in the coupling between radiation and 394 

precipitation is associated with cloud regime. Because both cloud regimes (Bony et al. 2004) and 395 

precipitation, and correspondingly, the strength of latent heating have a strong relationship to the 396 

environment (Huaman and Schumacher 2017), to understand the drivers in the spatial patterns 397 

we analyze the relationship between coupled CIPs and several proxies often used to characterize 398 

synoptic environment, including both thermodynamic variables (SST and CWV) and dynamic 399 

variable (vertical pressure velocity at 500hpa (ω500), which is a proxy for the large-scale 400 

overturning circulation).  401 

The relationships between Rc and Rh and these environmental variables are shown in 402 

Figure 3. In the left panels, A-Train results show that Rc is relatively strong at low SSTs and then 403 

weakens (represented by an increase) with increasing SST until about 295-300 K.  After this, Rc 404 

rapidly decreases with increasing SST representing a strong cooling efficiency enhancement. In 405 

the results of both reanalyses, the trends at moderate and high SSTs are completely opposite.  At 406 

low SSTs they both show strengthening Rc, however Rc continues to become strong until SSTs 407 

reach around 295 K, at which point they rapidly weaken. One of the reasons for the lack of 408 

strong Rc in the reanalyses at high SSTs is that, as previously discussed, over the Indo-Pacific 409 

warm pool region, where SST is typically over 300 K, both reanalyses fail to simulate the strong 410 

Rc that is shown by A-Train. This suggests that the reanalyses do not accurately couple the 411 

storm-scale precipitation and cloud radiative effects at high SSTs, either producing too much 412 

precipitation or too weak shortwave cloud radiative forcing. Another difference is in the position 413 

of the first minimum, which occurs at similar SST for both reanalyses but occurs at a much lower 414 

SST for A-Train. This discrepancy results from the differences in the extent of the regions 415 

demonstrating relatively large Rc in A-Train and reanalysis. The position of the first minimum is 416 

determined by strong Rc over the marine stratocumulus region and mid-latitudes. Strong Rc over 417 

marine stratocumulus regions is confined to the Southern Ocean and regions along the coast 418 

where SSTs remain relatively low in the A-Train results. In the rest of subtropics and in the 419 

southern hemisphere extratropics, A-Train reports a lower Rc. The global distributions in Figure 420 

1 show that regions of large Rc in reanalyses expand farther from the coasts toward the center of 421 

the ocean basins where SSTs are much warmer. However, reanalyses tend to produce lower 422 

cloud albedo and more precipitation over warmer SST regions. The differences combine make 423 

the Rc lower into regions of warmer SSTs. By contrast, the patterns of Rh associated with SSTs in 424 

the three datasets don’t vary as much with Rh increasing with increasing SSTs. Reanalyses 425 

exhibit a relatively lower range although they switch from low clouds that cool the atmosphere to 426 

clouds that heat the atmosphere at different SSTs with A-Train falling in between the two 427 

reanalyses. In general, the reanalyses show more atmospheric cooling per unit rainfall at low 428 

SSTs associated with shallow, warm rain systems and less atmospheric heating at high SSTs, 429 

likely associated with deficiencies representing deeper and high cloud anvils or overestimating 430 

convective precipitation.  The large differences between A-Train and the reanalyses simulating 431 

Rh at high SSTs is consistent with the differences shown over the warm pool area in Figure 1 and 432 

suggests that the reanalyses underestimate the strength of the coupling in deep convective cloud 433 

systems typical of this region.  434 
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In Figure 3c-d, the relationship between CWV and the coupled CIPs for the three datasets 435 

is shown. The patterns are similar to SST in all the three datasets, where Rc of A-Train has two 436 

minima but both reanalysis results only have one. It is not surprising that the results indicate the 437 

change in coupled CIPs with CWV is very similar to SST since the correlation coefficient 438 

between SST and CWV is 0.81 in ERA-Interim and 0.79 in MERRA2 in the matched dataset. 439 

However, from these plots, it is unknown which is the main driver. Many studies (Zhang et al. 440 

1996; Bony et al. 2015; Trenberth et al. 2010) have shown a strong relationship between cloud 441 

radiative effects and SST, but studies also show a strong relationship between CWV and 442 

precipitation/latent heating (Bretherton et al. 2004; Peters and Neelin 2006; Neelin et al. 2009; 443 

Holloway and Neelin 2009; Ahmed and Schumacher 2015, 2016). However, from previous 444 

studies (Bony et al. 2004; Jakob et al. 2003; Jakob et al. 2005; Stephens 2005; Voigt and Shaw 445 

2015), we know that both SST and CWV can contribute to the CRE and precipitation via 446 

different mechanisms, so a joint distribution of Rc and Rh with both variables is examined later in 447 

Figure 6 to determine which one is dominant in controlling Rc and Rh.   448 

The link between coupled CIPs and dynamical regime is shown in Fig 3e-f. Figure 3e 449 

shows that Rc decreases as ω500 increases from negative (ascending regimes) to positive 450 

(subsidence regimes). Convective cloud regimes are generally associated with strong upward 451 

motion and typically accompanied by large precipitation and latent heat release, corresponding to 452 

a smaller Rc (assuming that the cloud forcing on the surface does not change). Positive ω500 is 453 

generally associated with a more stable atmosphere and the formation of low stratiform clouds 454 

where precipitation is usually small, but the cloud forcing on the surface could be very large 455 

leading to increased Rc. Both the observations and the reanalyses behave similarly, although they 456 

are closer in moderate ascending regimes than in subsidence regimes where A-Train results 457 

become much weaker than the two reanalysis estimates.  Figure 3f shows that upward motion 458 

and downward motion obviously control the sign of Rh. For ascent regimes, Rh is positive and 459 

clouds heat the atmosphere more efficiently due to the enhancement of cloud greenhouse effect 460 

associated with deep convective clouds. For subsidence regimes, Rh is negative because the 461 

boundary layer tends to be more stable in these regimes and supports the formation of 462 

stratocumulus clouds, which will cool the atmosphere efficiently and produce little precipitation.  463 

Like Rc, the range of Rh estimates from A-Train and reanalyses appear to be closer in moderate 464 

ascent regimes than in the subsidence regimes and strong ascent regimes. 465 

Given the large differences between observations and reanalyses in the tails of the curves 466 

in Figure 3, the relative frequency of occurrence in each environmental bin is shown in Figure 4. 467 

The ERA-Interim and MERRA2 distributions are quite similar suggesting the reanalyses produce 468 

atmospheric states with similar frequencies, although that is not necessarily indicative of how 469 

these states are coupled with precipitating convection and will be examined more later.  There 470 

are clearly fewer samples in the tails of these distributions with few SST values above 302K or 471 

below 280K, few CWV values above 60 kg m
-2

 or below 10kg m
-2

, and few ω500 values above 472 

0.3 Pa/s and below -0.5 Pa/s. However, during data processing, we required a minimum of at 473 

least 100 samples for analysis and many of these bins still have hundreds to thousands of 474 

samples. While these environmental states are relatively rare and tend to be associated with very 475 

strong ascent or descent, they should not be neglected since they are often accompanied by some 476 

of the most extreme weather. 477 

Given the strong covariability in SST, CWV, and dynamic regimes, it is not surprising 478 

that Rc and Rh appear to be influenced by more than one environment variable. In an attempt to 479 

determine which is the controlling variable, Figures 5 and 6 show the joint distributions of mean 480 
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coupled CIPs conditionally sampled by combinations of different environmental variables. The 481 

first two rows of Fig. 5 show that the strength of Rc is largely controlled by the dynamic 482 

environment and that the observations and reanalyses are generally consistent. Clouds have 483 

strong cooling efficiencies in subsidence regimes and weak ones in ascent regimes. Within the 484 

ascent regime the observations show enhanced cooling with thermodynamic regime changes, 485 

while the reanalysis shows a steady weakening which appears to be more controlled by CWV 486 

than SST especially in MERRA-2. In the subsidence regimes, A-Train shows a steady 487 

weakening of Rc beginning at moderate SST and CWV, which is not shown in the reanalyses. 488 

This is likely due to the expansion of the regions of large Rc away from the coast and toward 489 

regions of greater SST and CWV shown by the reanalyses in Figure 1.  The relationship between 490 

Rc and the thermodynamic environment echoes the considerable differences between A-Train 491 

observations and reanalyses shown in Figure 3.  The reanalyses appear to be somewhat more 492 

horizontally stratified, which indicates that CWV is a stronger control on Rc than SST in the 493 

reanalyses compared to the observations.  In the observations, below about 290K it is difficult to 494 

discern which thermodynamic variable is controlling Rc. For SST above 290K, holding SST 495 

fixed shows increasing Rc with CWV in observations and decreasing in reanalyses. Holding 496 

CWV fixed with increasing SST shows little variation in reanalyses, suggesting that CWV 497 

appears to control the strength of Rc. These results also indicate that the observations show much 498 

more distinction between the controls on cooling efficiencies in different cloud regimes, while 499 

the reanalyses vary much more smoothly from one regime to another.   500 

Rh in Figure 6 shows that clouds have strong positive heating efficiencies in ascent 501 

regions and strong negative heating efficiencies in subsidence regimes. The sign of Rh is largely 502 

controlled by the dynamic environment, which is consistently shown in both A-Train 503 

observations and reanalyses. Within the ascent regime, A-Train results show an obvious trend in 504 

enhanced heating associated with the thermodynamic regime changes while the reanalysis show 505 

only a moderate enhanced heating, which is weakest in MERRA-2. This is likely due to the 506 

failure of reanalyses to simulate high Rh over warm pool regions as in Figure 1. From the last 507 

row of this figure, the observations demonstrate that clouds become increasingly efficient at 508 

heating the atmosphere per unit rain, especially in deep convective cloud regimes, in regions of 509 

ascent with high SST and CWV.  The observations are also much more vertically stratified, 510 

indicating that CWV is a stronger control than SST in the observations compared to the 511 

reanalyses.  512 

While Figure 5 shows that the reanalyses produce generally similar distributions of 513 

environments, Figure 3,5, and 6 suggest there are either differences in the environments in which 514 

the precipitating clouds occur or differences in the coupling between precipitation and radiation 515 

associated with a given atmospheric state in the reanalyses. Figure 7 shows the zonal mean 516 

difference (ERA-Interim minus MERRA-2) of air temperature, specific humidity, and ω profiles 517 

from the samples matched to A-Train precipitating clouds. While there are some hemispheric 518 

differences, the main patterns show that in the tropics and subtropics, ERA-Interim has a warmer 519 

temperature in the lower troposphere and lower temperature in the upper troposphere, suggesting 520 

a more stable atmosphere in MERRA-2. This is consistent with the negative omega differences 521 

across the tropics in Figure 7c, which means MERRA-2 has weaker ascent than ERA-Interim. In 522 

the subtropics where ω is typically positive, these negative differences mean MERRA-2 has 523 

stronger subsidence than ERA-Interim.  The hemispheric differences in specific humidity are 524 

larger, but with the exception of the lower troposphere in the northern midlatitudes, the 525 

atmosphere is generally moister in MERRA-2. Along with the previous figures, this figure 526 



Confidential manuscript submitted to Journal of Geophysics Research: Atmosphere 

 

suggests that differences in the atmosphere in which convection occurs as well as how the 527 

precipitation-radiation coupling manifests in the various atmospheric states both contribute to the 528 

differences with observations.  However, the environmental differences are relatively small and 529 

the differences between the observations (which have been matched to the reanalysis states) and 530 

reanalyses heating and cooling efficiencies in the previous figures suggests that the latter may be 531 

more important.   532 

 533 

5. Summary and Discussions 534 

In this paper, we use A-Train observations and reanalyses to study two coupled CIPs, Rc 535 

and Rh, that connect the surface and atmospheric CRE and precipitation. Not surprisingly, Rc and 536 

Rh vary with different cloud regimes. In regions dominated by stratocumulus clouds, they tend to 537 

cool the surface and atmosphere more efficiently per unit latent heat release because 538 

stratocumulus regions have low rain rates and highly reflective clouds that results in large cloud 539 

SW radiative forcing. In this situation, both strong SW CRE and low rain rate contribute to 540 

strengthen Rc. For regions associated with deep convective clouds in environments with strong 541 

ascent and sufficient CWV, observations show that clouds cool the surface and heat the 542 

atmosphere more efficiently per unit latent heat release than the regions where there is weak 543 

ascent or low CWV. Elevated and highly reflective cloud tops and large cirrus anvils enhance 544 

both the cloud greenhouse effect and the cloud SW radiative cooling at surface.  545 

 Comparison between A-Train observations and coupled CIPs in ERA-Interim and 546 

MERRA-2 show that they generally have similar global patterns. However, as model 547 

parameterizations are challenged with simulating different cloud regimes, we found some 548 

possible limitations of reanalysis data in coupling cloud radiative effects and precipitation over 549 

deep convective cloud regions. Both ERA-Interim and MERRA-2 show weaker Rc and Rh over 550 

the warm pool area where deep convective clouds prevail. The lower Rh values result from an 551 

underestimate of the LW CRE at TOA over tropical regions and overestimate of precipitation. 552 

Moreover, when the coupled CIPs are composited for increasingly shorter time scales, there are 553 

larger biases in reanalysis coupled CIPs compared with observation than was shown for 554 

calculations at longer timescales (Daloz et al. 2018), so we suspect that the reanalyses are 555 

challenged more in capturing the coupling between the radiation and precipitation for convective 556 

systems with shorter timescale variability, such as convectively-coupled waves.   557 

Observation data inevitably have some uncertainties due to assumptions in the retrieval 558 

algorithms. For instance, 2BFLX partly overcomes the uncertainties in the radiative effects 559 

caused by low clouds, cirrus and aerosols, but some uncertainties remain in the SW and LW 560 

fluxes. The former is primarily the result of uncertainties in LWC estimates, and the latter is 561 

linked to errors in prescribed skin temperature and the lower-tropospheric water vapor 562 

(Henderson et al. 2013). These uncertainties should be considered when comparing observational 563 

results and reanalysis or model outputs; however, Henderson et al. (2013) showed relatively 564 

good agreement between CERES and 2BFLX although it should be noted that differences 565 

become relatively larger at shorter temporal and smaller spatial averaging scales. Estimates from 566 

different observation systems in the future could help reduce these observational uncertainties. 567 

How coupled CIPs are linked with their environment was also examined. Generally, the 568 

reanalyses show less heating of the atmosphere at high SSTs and more cooling of the atmosphere 569 

at low SSTs. The dynamic regime appears to act as a switch with weak to strong surface cooling 570 

efficiencies and from atmospheric cooling to heating as the regime shifts from ascent to 571 

subsidence.  The thermodynamic regime acts more as a control on the strength of the coupling 572 

parameters, especially for Rh. In ascent regimes, precipitating clouds go from weak to strong Rh 573 
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with increasing SST and CWV which suggests that cloud heat the atmosphere more efficiently 574 

per unit rainfall in warm and moist environments. Joint distributions of Rh as a function of SST 575 

and CWV in the observations indicate that CWV is the primary control, with relatively constant 576 

Rh across a range of SSTs (between 275K-302K) for fixed CWV. Reanalyses capture the general 577 

relationships between coupled CIPs and their environment, with several important distinctions.  578 

Neither ERA-Interim or MERRA-2 capture the strong cooling efficiencies at high SST and 579 

CWV, instead they have strong Rc from low to moderate SST and CWV which rapidly weakens 580 

at high SST and CWV suggesting that the coupling between precipitation and shortwave cloud 581 

forcing in these regimes is too weak in the reanalyses. Likewise, reanalyses also fail to capture 582 

the strong heating per unit precipitation with increasing SST and CWV.  They also do not appear 583 

to be as strongly linked with the environmental moisture as the observations.  584 

The observational-reanalyses discrepancies shown here could be caused by a variety of 585 

factors including differences in the environmental states in which convection occurs in the 586 

reanalyses, differences in the timing and location of reanalysis convection (leading to 587 

mismatches with the observations at the shorter timescales examined here), or the precipitation-588 

radiation coupling produced by the model parameterizations.  There are notable differences in 589 

the environments in which the two reanalyses produce convection which may explain some of 590 

the differences between the two reanalyses. However, there are still clear differences between the 591 

observations and the reanalyses when the observations are composited by the reanalysis 592 

environmental states which suggests the latter two factors could play a bigger role.  Attempting 593 

to correct timing and location mismatches for every precipitating cloud is beyond the scope of 594 

this study, but there are clear indications in the literature that suggest the biases of Rc and Rh 595 

between the reanalysis and observations may be linked to both uncertainties in the representation 596 

of cloudiness and precipitation intensity, as well as how they are coupled in the reanalysis 597 

systems. Both Miao et al. (2019) and Hinkelman. (2019) show that in tropical regions, ERA-598 

Interim exhibits considerable underestimation for high-level clouds, which reduces both the SW 599 

and LW CRE at TOA. However, MERRA-2 better represents high-level clouds, perhaps even 600 

overrepresents, but tends to underestimate the middle and low-level cloudiness.  In MERRA-2’s 601 

case, the biases of Rc and Rh may be mainly due to the excessive convective precipitation 602 

intensity over the warm pool region (Bosilovich et al. 2017). Given the lack of middle and low-603 

level cloudiness, there may also be some biases in radiative fluxes due to cloud thickness.  In 604 

addition to the potential underestimation in high clouds in ERA-Interim, it may overestimate 605 

precipitation in both ascending and descending regimes related to the parameterization scheme 606 

used in both convective and marine boundary layer clouds (Dolinar et al 2016) and not capturing 607 

the cloud entrainment and detrainment rates (Naud et al. 2014). Fortunately, in the latest version 608 

ERA-5 (Hersbach et al 2018), representations of mixed phased clouds and parameterization of 609 

convection including entrainment and coupling with large-scale circulation are expected to be 610 

improved leading better estimates of convective cloudiness, radiation at TOA, and precipitation. 611 

Even though over most of the globe, Rh and Rc are not large, Daloz et al. (2018) highlight 612 

the importance of Rh and Rc in regions such as the west Pacific Ocean and mid-Atlantic. For 613 

example, in failing to simulate Rc and Rh over the Indo-Pacific warm pool, reanalysis also does 614 

not capture a strong enough of east-west gradient of Rc and Rh over the Pacific as in the A-Train 615 

results. However, as the transition of the precipitation gradient over the Pacific becomes more 616 

pronounced during an ENSO event, the model response to the circulation becomes more 617 

sensitive to the latent heating variation (Schumacher et al. 2004). Also, a slight change in surface 618 

fluxes and tropospheric moistening over the West Pacific Ocean could have significant influence 619 
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on the propagation of MJO that may not be captured in reanalysis or models given the 620 

increasingly large biases between reanalyses and observations at shorter coupling timescales. 621 

Daloz et al (2018) also suggested that Rh may be a good proxy for processes associated 622 

convective aggregation. Compensating subsidence around more aggregated convection will 623 

make the surrounding atmosphere drier and clearer and increase outgoing longwave radiation to 624 

the space (Bretherton et al. 2005; Tobin et al. 2012; Bony et al. 2015; Daloz et al 2018). In our 625 

observational results, Rh is high over the warm pool area and generally increases in regions of 626 

high CWV and SST, which indicates that the atmospheric radiative heating by deep convection 627 

increases faster than the precipitation power law scaling with CWV that has been shown in a 628 

number of studies (Bretherton et al. 2004, Ahmed and Schumacher 2015). This could imply that 629 

cloud systems vary in such a way, perhaps via convective aggregation in moist regions, as to 630 

become more efficient at heating the atmosphere per unit rainfall to maintain global energy 631 

balance with the expanding dry regions.  632 

In the future, the coupled CIPs can be compared with those in GCMs or cloud resolving 633 

models to understand how well models couple precipitation and radiation, what 634 

parameterizations need to be improved to better capture the coupling, and determine more about 635 

the underlying physical processes driving the observed relationships between coupled CIPs and 636 

their environment. 637 
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 1004 
Figure 1: The global observed distributions of Rc (a, c, e) and Rh (b, d, e) derived from A-Train 1005 

(a, b), ERA-Interim (c, d) and MERRA-2 (e, f) from September 2006 - December 2010. 1006 

 1007 



Confidential manuscript submitted to Journal of Geophysics Research: Atmosphere 

 

 1008 

Figure 2: Time-scale dependence of both of Rc (left column) and Rh (right column) derived from 1009 

A-Train, ERA-Interim, MERRA-2 for the three cloud regimes highlighted in Figure 1: (a, b) 1010 

warm pool (25°S–15°N, 90–170°E), (c, d) stratocumulus (0–30°S, 70–100°W), and (e, f) shallow 1011 

cumulus (15-30°S, 150–180°W).  1012 

 1013 
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 1014 

Figure 3: (a,c,e) Rc and (b,d,f) Rh as a function of (a,b) SST, (c,d) CWV, and (e,f) ω500. 1015 
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 1017 

 1018 

Figure 4: Distribution of the sample sizes at each bin corresponding to Figure 3. The blue line is 1019 

the distribution of the sample sizes at each bin for MERRA-2 and the green line is A-Train and 1020 

ERA-Interim.  One should be noticed that A-Train and reanalysis have the same sample sizes as 1021 

the ERA-Interim (green line) because all the Rc and Rh of A-Train have been matched with the 1022 

environmental variables from ERA-Interim. Rc and Rh as a function of SST(a), CWV(b), and 1023 

ω500(c) obviously has the same sample size distributions. 1024 

 1025 

 1026 
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 1027 
Figure 5:  Joint distributions of mean Rc derived from A-Train/ERA-Interim/MERRA2 as a 1028 

function of (a-c) SST vs. ω500, (d-f) CWV vs. ω500, (g-i) SST vs. CWV. 1029 

 1030 
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 1031 
Figure 6:  The same as Figure 5, but for Rh. 1032 

 1033 

 1034 

Figure 7:  Zonal mean difference of the vertical profiles of (a) air temperature, (b) specific 1035 

humidity, and (c) ω between ERA-Interim and MERRA-2 matching the A-Train samples 1036 

between 2006-2010. 1037 


