Back to parent page - Gas-aerosol Exchange
Numerical quadrature for calculating the mass transfer coefficient of a lognormal mode
As explained in the section on mass transfer rates,
the mass transfer coefficient for gas species \(L\) and aerosol mode \(i\) is proportional to \(f(K_{n,L}, \alpha_{L}) D_{p}\) integrated over the size distribution of mode \(i\). MAM applies the Gauss–Hermite quadrature to a manipulated form of the integrant, aiming at achieving a good trade-off betwen accuracy and computational cost. The algorithm is explained below.
The integrand
Let us use \(J\left(D_p\right)\) to denote the integrand and insert the expression of \(f(K_{n,L}, \alpha_{L})\). This gives (see section on mass transfer rates)
\[
\begin{eqnarray}
J\left(D_p\right)
&=& f(K_{n,L}, \alpha_{L})D_p
= \dfrac{0.75 \alpha_{L} \left[1+\dfrac{2\lambda_L}{D_p}\right] D_p}
{0.75 \alpha_{L} + \dfrac{2\lambda_L}{D_p}
\left[1+\dfrac{2\lambda_L}{D_p}+0.283 \alpha_{L}\right]} \,.
\end{eqnarray}
\]
We can see
\[
\begin{eqnarray}
\lim_{D_p\rightarrow 0} J\left(D_p\right) &=& \dfrac{0.75\alpha_L}{2\lambda_L}D_p^2 \\[2mm]
\lim_{D_p\rightarrow \infty} J\left(D_p\right) &=& D_p
\end{eqnarray}
\]
This gives the motivation to rewrite the integrand as
\[
J(D_p) = \left[\dfrac{J(D_p)}{D_p^\beta}\right] D_p^\beta
\]
with \(\beta \in [1,2]\) being a constant for a specific lognormal mode at a specific location and time.
It is likely that the part in square brackets will vary relatively slowly with respect to \(D_p\). Since \(D_p^\beta\) can be integrated with high accurracy using the Gauss-Hermite quadrature, this rewritten form has the potential of helping to obtain an overall high accuracy.
Specifying \(\beta\)
For brevity, we define
\[
G(D_p) = \dfrac{J(D_p)}{D_p^\beta}\,.
\]
Since
\[
\beta
= \dfrac{d\ln J(D_p)}{d\ln D_p} - \dfrac{d\ln G(D_p)}{d\ln D_p}\,,
\]
ignoring the last term gives
\[
\begin{eqnarray}
\beta &\approx& \dfrac{d\ln\left[ f(K_{n,L}, \alpha_{L}) D_p \right]}{d\ln D_p}\\
&=& 1 + \frac{d\left[ \ln f(K_{n,L}, \alpha_{L}) \right]}{d\ln D_p} \\
&=& 1 + \frac{d\ln f(K_{n,L},\alpha_{L})}{d\ln K_{n,L}} \frac{d\ln K_{n,L}}{d\ln D_p} \\
&=& 1 - K_{n,L} \left[ \frac{1}{1+K_{n,L}} -
\frac{1+2K_{n,L}+0.283\alpha_{L}}
{0.75\alpha_{L}+K_{n,L} \left(
1+K_{n,L}+0.283\alpha_{L} \right)} \right] \,.
\end{eqnarray}
\]
The numerical quadrature described below uses \(\beta\) estimated at \(D_{p} = D_{gn,w,i}\).
Numerical quadrature
Using the shorthand
\[
\begin{align}
x &= \ln D_{p} \\
x_{gn,i}&= \ln D_{gn,w,i} \\
s_{i}&= \ln \sigma_{g,i}
\end{align}
\]
we can write
\[
\begin{eqnarray}
J(D_p)\, n_{i}(\ln D_p) &=& G(D_p)D_{p}^\beta\, n_{i}(x)\\
&=& \frac{N_{t,i} G(D_p)}{\sqrt{2\pi}s_{i}}
D_{p}^\beta\exp \left [ -\frac{(x-x_{gn,i})^2}{2s_{i}^2} \right ] \\
&=& \frac{N_{t,i} G(D_p)}{\sqrt{2\pi}s_{i}}
\exp \left [\beta x-\frac{(x-x_{gn,i})^2}{2s_{i}^2} \right ]
\end{eqnarray}
\]
Some further arithmetic maniputation gives
\[
\begin{eqnarray}
&& J(D_p)\, n_{i}(\ln D_p) \\
&=&\left[\frac{N_{t,i}}{\sqrt{2\pi}s_{i}}
\exp \left ( \beta x_{gn,i} + \frac{\beta^2}{2}s_{i}^2
\right )
\right] G(D_p) \exp \left \{ -\frac{
\left [ x - \left (x_{gn,i}+\beta s_{i}^2 \right ) \right ]^2}
{2s_{i}^2} \right \} \,,
\end{eqnarray}
\]
hence the mass transfer coefficient can be written as
\[
\begin{align} \label{kmt2}
C_{L,i} &= 2 \pi \mathbb{D}_{g,L}
\int_{-\infty}^{\infty}
\frac{J(x)}{D_{p}^\beta} D_{p}^\beta n_{i}(x) dx
\nonumber \\
&= \left[\frac{\sqrt{2 \pi} \mathbb{D}_{g,L} N_{t,i}}
{s_{i}} \exp \left( \beta x_{gn,i} + \frac{\beta^2}{2}
s_{i}^2 \right) \right] \int_{-\infty}^{\infty}
G(D_p)
\exp \left\{ -\frac{ \left[ x - \left( x_{gn,i} + \beta
s_{i}^2 \right) \right]^2 }{2s_{i}^2} \right\}
dx \,.
\end{align}
\]
To apply the Gauss-Hermite quadrature, we denote
\[
y = \frac{x - \left( x_{gn,i}+\beta s_{i}^2 \right)}
{\sqrt2 s_{i}}
\]
and write
\[
\begin{align} \label{kmt3}
C_{L,i} &= \frac{\sqrt{2 \pi} \mathbb{D}_{g,L}
N_{t,i}}{s_{i}} \exp \left( \beta x_{gn,i} +
\frac{\beta^2}{2} s_{i}^2 \right )
\int_{-\infty}^{\infty} \exp^{-y^2}
\frac{J(\sqrt2 s_{i} y+x_{gn,i}+\beta s_{i}^2)}
{\exp \left [ \beta \left ( \sqrt2 s_{i} y+x_{gn,i}+
\beta s_{i}^2 \right ) \right ]}
d(\sqrt2 s_{i} y+x_{gn,i}+\beta s_{i}^2) \nonumber \\
&= 2\sqrt{\pi} \mathbb{D}_{g,L} N_{t,i}
\exp \left( \beta x_{gn,i} + \frac{\beta^2}{2} s_{i}^2
\right) \int_{-\infty}^{\infty} \exp^{-y^2}
\frac{J(\sqrt2 s_{i} y+x_{gn,i}+\beta s_{i}^2)}
{\exp \left[ \beta \left( \sqrt2 s_{i} y+x_{gn,i}+\beta
s_{i}^2 \right) \right]} dy \,.
\end{align}
\]
MAM4 uses two quadrature points. The approximated mass transfer coefficient
for species \(L\) and mode \(i\) is
\[
\begin{equation}
C_{L,i} \approx 2\sqrt{\pi} \mathbb{D}_{g,L}
N_{t,i} \exp \left ( \beta x_{gn,i} + \frac{\beta^2}{2}
s_{i}^2 \right ) \sum_{k=1}^{2} \mathbb{W}_{k}
\frac{J(\sqrt2 s_{i} \mathbb{R}_{k}+x_{gn,i}+
\beta s_{i}^2)}{\exp \left[ \beta \left( \sqrt2 s_{i}
\mathbb{R}_{k}+x_{gn,i}+\beta s_{i}^2 \right) \right]} \,.
\end{equation}
\]
where \(\mathbb{R}_{k}\) is the \(k\)-th root of the Hermite polynomial
(\(k = 1,2\)) and \(\mathbb{W}_{k}\) is its associated weight.