Back to parent page - Gas-aerosol Exchange
Time evolution equations for the condensation of sulfuric acid gas¶
Sulfuric acid is assumed to be nonvolatile in the tropospheric version of MAM. In other words, \(q_{v,H_2SO_4,sat}=0\) at tropospheric temperatures, and \({\rm H_2SO_4}\) will always condense when it exits. (Note that there is a special treatment for the stratospheric sulfate from volcanic eruptions, which includes a non-zero saturation vapor mixing ratio).
Considering only the effect of \({\rm H_2SO_4}\) condensation, the time evolution equations of relavant prognostic variables in MAM read
\[
\begin{align}
\frac{dq_{m,SO_4,i}}{dt}
&= q_{v,H_2SO_4} C_{H_2SO_4,i}, \quad i = 1,...,I \,, \label{eqn:ddt_so4} \\
\frac{dq_{v,H_2SO_4}}{dt}
&= - q_{v,H_2SO_4} \sum_{i=1}^{I} C_{H_2SO_4,i} \,, \label{eqn:ddt_h2so4_gas} \\
%
\frac{dq_{m,SP,i}}{dt} &= 0, \quad \text{where}\,\, SP \neq SO_4, \,\, i = 1,...,I, \label{eqn:ddt_other_mass}\\
\frac{dq_{n,i}}{dt} & = 0, \quad i = 1,...,I \label{eqn:ddt_number}
\end{align}
\]
Here \(I\) is the number of modes of interstitial aerosol. The expression of \(C_{H_2SO_4,i}\) can be found on a different page.