Back to parent page - Aerosol nucleation
Binary nucleation
The binary nucleation parameterization of Vehkamaki et al.
(2002,
2013)
provides an empirical expression of the nucleation rate
\(J^*\) as a function of \(T\), \(RH\) and \(c_{n,H_2SO_4}\).
Here, \(J^*\) is the number of stable new clusters formed
per unit time and unit volume of air (cm\(^{-3}\) s\(^{-1}\)).
The parameterization is valid for atmospheric conditions within the following ranges:
- \(T \in [230.15, 305.15]\);
- \(RH \in [0.0001, 1.0]\);
- \(c_{n,H_2SO_4} \in [10^4, 10^{11}]\).
\(T\) and \(RH\) values that are outside the ranges of validity
are clipped to the corresponding bounds.
When \(c_{n,H_2SO_4} \le 10^4\) or \(q_{v,H_2SO_4,avg} \le 4 \cdot 10^{-16}\)
nucleation is assumed to not occur
(i.e., \(J^* = 0\) and no further calculation is done.
The original paper also states that the parameterization
is expected to be valid only in the range of \(J^* \in [10^{-7}, 10^{10}]\).
This conditions is not checked in MAM.
Under atmospheric conditions within the range of validity,
this parameterization will compute the following quantities in order:
Mole fraction of sulfric acid in a critical cluster
The mole fraction \(x^*\) is a function of T and RH.
\[
\begin{align}
x^* &= 0.740997 - 0.00266379 T - 0.00349998 \ln c_{H_2SO_4}
+ 0.0000504022 T \ln c_{H_2SO_4} \nonumber \\
&+ 0.00201048 \ln RH - 0.000183289 T \ln RH
+ 0.00157407 (\ln RH)^2 \nonumber \\
&- 0.0000179059 T (\ln RH)^2 + 0.000184403 (\ln RH)^3 \nonumber \\
&- 1.50345 \cdot 10^{-6} T (\ln RH)^3 \,.
\end{align}
\]
\[
\begin{align}
J^* &= \exp \Big[ a(T,x^*) + b(T,x^*) \ln RH +
c(T,x^*) (\ln RH)^2 + d(T,x^*) (\ln RH)^3 \nonumber \\
&+ e(T,x^*) \ln c_{H_2SO_4} + f(T,x^*) (\ln RH) \ln c_{H_2SO_4} +
g(T,x^*) (\ln RH)^2 \ln c_{H_2SO_4} \nonumber \\
&+ h(T,x^*) (\ln c_{H_2SO_4})^2 + i(T,x^*) (\ln RH)
(\ln c_{H_2SO_4})^2 + j(T,x^*) (\ln c_{H_2SO_4})^3 \Big] \,, \label{vk2002_nucrate}
\end{align}
\]
where
\[
\begin{align}
a(T,x^*) &= 0.14309 + 2.21956 T - 0.0273911 T^2 \nonumber \\
&+ 0.0000722811 T^3 + \frac{5.91822}{x^*} \,, \\
b(T,x^*) &= 0.117489 + 0.462532 T - 0.0118059 T^2 \nonumber \\
&+ 0.0000404196 T^3 + \frac{15.7963}{x^*} \,, \\
c(T,x^*) &= -0.215554 - 0.0810269 T + 0.00143581T^2 \nonumber \\
&- 4.7758 \cdot 10^{-6} T^3 - \frac{2.91297}{x^*} \,, \\
d(T,x^*) &= -3.58856 + 0.049508 T - 0.00021382 T^2 \nonumber \\
&+ 3.10801 \cdot 10^{-7} T^3 - \frac{0.0293333}{x^*} \,, \\
e(T,x^*) &= 1.14598 - 0.600796 T + 0.00864245 T^2 \nonumber \\
&- 0.0000228947 T^3 - \frac{8.44985}{x^*} \,, \\
f(T,x^*) &= 2.15855 + 0.0808121 T - 0.000407382 T^2 \nonumber \\
&- 4.01957 \cdot 10^{-7} T^3 + \frac{0.721326}{x^*} \,, \\
g(T,x^*) &= 1.6241 - 0.0160106 T + 0.0000377124 T^2 \nonumber \\
&+ 3.21794 \cdot 10^{-8} T^3 - \frac{0.0113255}{x^*} \,, \\
h(T,x^*) &= 9.71682 - 0.115048 T + 0.000157098 T^2 \nonumber \\
&+ 4.00914 \cdot 10^{-7} T^3 + \frac{0.71186}{x^*} \,, \\
i(T,x^*) &= -1.05611 + 0.00903378 T - 0.0000198417 T^2 \nonumber \\
&+ 2.46048 \cdot 10^{-8} T^3 - \frac{0.0579087}{x^*} \,, \\
j(T,x^*) &= -0.148712 + 0.00283508 T - 9.24619 \cdot 10^{-6} T^2 \nonumber \\
&+ 5.00427 \cdot 10^{-9} T^3 - \frac{0.0127081}{x^*} \,.
\end{align}
\]
Properties of critical clusters
- Total number of molecules in a critical cluster, \(n_{tot}\)
\[
\begin{align}
n_{tot} &= \exp \Big[ A(T,x^*) + B(T,x^*) \ln RH +
C(T,x^*) (\ln RH)^2 + D(T,x^*) (\ln RH)^3 \nonumber \\
&+ E(T,x^*) \ln c_{H_2SO_4} + F(T,x^*) \ln RH \ln c_{H_2SO_4} +
G(T,x^*) (\ln RH)^2 \ln c_{H_2SO_4} \nonumber \\
&+ H(T,x^*) (\ln c_{H_2SO_4})^2 +
I(T,x^*) \ln RH (\ln c_{H_2SO_4})^2 +
J(T,x^*) (\ln c_{H_2SO_4})^3 \Big] \,, \label{vk2002_ntot}
\end{align}
\]
where
\[
\begin{align}
A(T,x^*) &= -0.00295413 - 0.0976834 T + 0.00102485 T^2 \nonumber \\
&- 2.18646 \cdot 10^{-6} T^3 - \frac{0.101717}{x^*} \,, \\
B(T,x^*) &= -0.00205064 - 0.00758504 T + 0.000192654 T^2 \nonumber \\
&- 6.7043 \cdot 10^{-7} T^3 - \frac{0.255774}{x^*} \,, \\
C(T,x^*) &= 0.00322308 + 0.000852637 T - 0.0000154757 T^2 \nonumber \\
&+ 5.66661 \cdot 10^{-8} T^3 + \frac{0.0338444}{x^*} \,, \\
D(T,x^*) &= 0.0474323 - 0.000625104 T + 2.65066 \cdot 10^{-6} T^2 \nonumber \\
&- 3.67471 \cdot 10^{-9} T^3 - \frac{0.000267251}{x^*} \,, \\
E(T,x^*) &= -0.0125211 + 0.00580655 T - 0.000101674 T^2 \nonumber \\
&+ 2.88195 \cdot 10^{-7} T^3 + \frac{0.0942243}{x^*} \,, \\
F(T,x^*) &= -0.038546 - 0.000672316 T + 2.60288 \cdot 10^{-6} T^2 \nonumber \\
&+ 1.19416 \cdot 10^{-8} T^3 - \frac{0.00851515}{x^*} \,, \\
G(T,x^*) &= -0.0183749 + 0.000172072 T - 3.71766 \cdot 10^{-7} T^2 \nonumber \\
&- 5.14875 \cdot 10^{-10} T^3 + \frac{0.00026866}{x^*} \,, \\
H(T,x^*) &= -0.0619974 + 0.000906958 T - 9.11728 \cdot 10^{-7} T^2 \nonumber \\
&- 5.36796 \cdot 10^{-9} T^3 - \frac{0.00774234}{x^*} \,, \\
I(T,x^*) &= 0.0121827 - 0.00010665 T + 2.5346 \cdot 10^{-7} T^2 \nonumber \\
&- 3.63519 \cdot 10^{-10} T^3 + \frac{0.000610065}{x^*} \,, \\
J(T,x^*) &= 0.000320184 - 0.0000174762 T + 6.06504 \cdot 10^{-8} T^2 \nonumber \\
&- 1.42177 \cdot 10^{-11} T^3 + \frac{0.000135751}{x^*} \,.
\end{align}
\]
- Total number of H\(_2\)SO\(_4\) molecules in a critical cluster is, per definition,
\[
\begin{equation}
n_{H_2SO_4} = n_{tot} \,x^* \,.
\end{equation}
\]
- Radius of critical cluster \(r^*\) (unit: nm)
\[
r^* = \exp \left[ -1.6524245 + 0.42316402 x^* +
0.3346648 \ln n_{tot} \right] \,.
\]